Search results for "MESH: Membrane Microdomains"

showing 3 items of 3 documents

S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.

2011

International audience; BACKGROUND & AIMS: Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS: Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell…

MESH: NitroglycerinMESH: Signal TransductionTime FactorsMESH: Membrane MicrodomainsApoptosisMESH : Fas Ligand ProteinCytoplasmic partMESH: Lipid AFas ligandMiceNitroglycerin0302 clinical medicineMESH : Protein TransportMESH : FemaleMESH: AnimalsFADDLipid raft0303 health sciencesTumorbiologyColon CancerMESH : Lipid AMESH : BiotinylationGastroenterologyFas receptorMESH: Antigens CD95Protein TransportLipid AMESH : Colonic NeoplasmsMESH : Nitric OxideMESH : Nitric Oxide Donors030220 oncology & carcinogenesisColonic NeoplasmsDeath-inducing signaling complexFemale[ SDV.MHEP.HEG ] Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH : MutationMESH : TransfectionSignal TransductionMESH : Time FactorsMESH: Protein TransportFas Ligand ProteinMESH : Mammary Neoplasms ExperimentalMESH: MutationMESH: Cell Line TumorMESH: Mammary Neoplasms ExperimentalNitric OxideTransfectionCaspase 803 medical and health sciencesMembrane MicrodomainsCell Line TumorMESH : MiceAnimalsHumansBiotinylationNitric Oxide DonorsMESH: BiotinylationCysteinefas ReceptorMESH: MiceMESH : Protein Processing Post-Translational030304 developmental biologyMESH : Signal TransductionMESH: Colonic NeoplasmsMESH : CysteineMESH: HumansHepatologyMESH : Cell Line TumorMESH: ApoptosisMESH: TransfectionMESH : HumansMESH: Time FactorsMammary Neoplasms Experimental[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH: CysteineMESH: Nitric Oxide DonorsMolecular biologySignalingMESH: Fas Ligand ProteinMESH : NitroglycerinApoptosisLocalizationMESH: Nitric OxideMESH: Protein Processing Post-TranslationalMutationbiology.proteinMESH : Membrane MicrodomainsMESH : AnimalsMESH : Antigens CD95Protein Processing Post-TranslationalMESH: FemaleMESH : Apoptosis
researchProduct

Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.

2006

International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the…

MESH : Hela CellsMESH: Membrane GlycoproteinsMESH: Membrane MicrodomainsDecoy Receptor 1ApoptosisMESH : Membrane GlycoproteinsReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandJurkat Cells0302 clinical medicineMESH : Tumor Necrosis Factor Decoy ReceptorsMESH: Jurkat CellsDecoy receptorsReceptorCells CulturedMESH : Jurkat CellsMESH : Tumor Necrosis Factor-alpha0303 health sciencesMembrane GlycoproteinsMESH : Protein BindingArticlesMESH : Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsTumor Necrosis Factor Receptor-Associated Peptides and ProteinsCell biology030220 oncology & carcinogenesisCaspasesDeath-inducing signaling complexApoptosis/drug effects; Apoptosis Regulatory Proteins/antagonists & inhibitors; Apoptosis Regulatory Proteins/pharmacology; Caspases/metabolism; Cells Cultured; Death Domain Receptor Signaling Adaptor Proteins; Enzyme Activation/drug effects; GPI-Linked Proteins; HeLa Cells; Humans; Jurkat Cells; Membrane Glycoproteins/antagonists & inhibitors; Membrane Glycoproteins/pharmacology; Membrane Microdomains/drug effects; Protein Binding/drug effects; Receptors TNF-Related Apoptosis-Inducing Ligand; Receptors Tumor Necrosis Factor/metabolism; TNF-Related Apoptosis-Inducing Ligand; Tumor Necrosis Factor Decoy Receptors; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism; Tumor Necrosis Factor-alpha/antagonists & inhibitors; Tumor Necrosis Factor-alpha/pharmacologyMESH : Apoptosis Regulatory ProteinsMESH: TNF-Related Apoptosis-Inducing LigandProtein BindingMESH: Cells CulturedDeath Domain Receptor Signaling Adaptor ProteinsMESH: Enzyme ActivationBiologyMESH: Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsGPI-Linked Proteins03 medical and health sciencesMembrane MicrodomainsCell surface receptorMESH : Cells Cultured[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyReceptors Tumor Necrosis Factor Member 10cHumansMESH: Protein Binding[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing LigandMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyDeath domainMESH: CaspasesMESH: HumansTumor Necrosis Factor-alphaMESH: Apoptosis Regulatory ProteinsMESH: ApoptosisMESH : HumansCell BiologyMESH: Receptors Tumor Necrosis FactorMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : Receptors Tumor Necrosis FactorEnzyme ActivationMESH: Hela CellsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsApoptosisMESH: Tumor Necrosis Factor-alphaMESH : Membrane MicrodomainsMESH : CaspasesApoptosis Regulatory ProteinsMESH : Enzyme ActivationMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy ReceptorsHeLa CellsMESH: Death Domain Receptor Signaling Adaptor Proteins
researchProduct

Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cance…

2005

AbstractIn this report we show, by confocal analysis of indirect immunofluorescence, that the type-1 cannabinoid receptor (CB1R), which belongs to the family of G-protein-coupled receptors, is expressed on the plasma membrane in human breast cancer MDA-MB-231 cells. However, a substantial proportion of the receptor is present in lysosomes. We found that CB1R is associated with cholesterol- and sphyngolipid-enriched membrane domains (rafts). Cholesterol depletion by methyl-β-cyclodextrin (MCD) treatment strongly reduces the flotation of the protein on the raft-fractions (DRM) of sucrose density gradients suggesting that CB1 raft-association is cholesterol dependent. Interestingly binding of …

CB1 receptorCannabinoid receptorMESH: Membrane MicrodomainsMESH: Receptor Cannabinoid CB1Biochemistrychemistry.chemical_compoundRaftsMESH: Cholesterol0302 clinical medicineReceptor Cannabinoid CB1Structural BiologyReceptorLipid raft0303 health sciencesChemistrybeta-CyclodextrinsAnandamideEndocannabinoid system3. Good healthCell biologyCholesterollipids (amino acids peptides and proteins)AgonistMESH: beta-CyclodextrinsMESH: Cell Line TumorPolyunsaturated Alkamidesmedicine.drug_classBiophysicsBreast NeoplasmsArachidonic Acids03 medical and health sciencesMembrane MicrodomainsCell Line TumorGeneticsmedicineMESH: Arachidonic AcidsHumansMolecular Biology030304 developmental biologyG protein-coupled receptorMESH: HumansMESH: Polyunsaturated AlkamidesCell Membrane[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAnandamideCell BiologyCaveolin 1LysosomesIntracellular traffickingMESH: Breast Neoplasms030217 neurology & neurosurgeryMESH: Cell MembraneMESH: LysosomesEndocannabinoids
researchProduct